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ABSTRACT

By using low-dimensional chaotic maps, the power-law relationship established between the sample mean and variance called Taylor’s Law
(TL) is studied. In particular, we aim to clarify the relationship between TL from the spatial ensemble (STL) and the temporal ensemble
(TTL). Since the spatial ensemble corresponds to independent sampling from a stationary distribution, we confirm that STL is explained by
the skewness of the distribution. The difference between TTL and STL is shown to be originated in the temporal correlation of a dynamics. In
case of logistic and tent maps, the quadratic relationship in the sample mean and variance, called Bartlett’s law, is found analytically. On the
other hand, TTL in the Hassell model can be well explained by the chunk structure of the trajectory, whereas the TTL of the Ricker model has
a different mechanism originated from the specific form of the map.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0036892

Taylor’s Law (TL) is a widely held power-law-like behavior
between sample mean and sample variance, originally found in
the field of population ecology. When the sample mean and sam-
ple variance are calculated from a time series, it is called temporal
TL (TTL), and when these are calculated from a different time
series at a given time, it is called spatial TL (STL). TL has been
observed in a variety of fields outside of population ecology,
but the mechanism of TL and the relationship between TTL and
STL is still unclear. In this paper, we report a new relationship
between STL and TTL using four basic one-dimensional chaotic
maps, including a logistic map. Specifically, we analytically derive
the relationship between TTL and STL from stationary distribu-
tions and temporal correlations as a generalization of Cohen and
Xu.22 In the case of logistic and tent maps, a quadratic relation-
ship between sample mean and sample variance, called Bartlett’s
law, was found analytically: the TTL of the Hassell model can
be adequately explained by the chunk structure of the trajectory,
whereas the TTL of the Ricker model is a different mechanism
derived from the shape of the map. We believe that the analysis in
this paper may provide clues in the more general case as well.

I. INTRODUCTION

We challenged the unexplained widespread power-law behav-
ior between the sample mean and sample variance, called Taylor’s

law (TL),1,2 with one-dimensional (1D) chaotic maps. TL was orig-
inally found in the field of population ecology and has since been
reported more widely, ranging from demographic ecology to prime
number distribution,3 complex networks,4 and so on.5,6 TL expresses
that a power-law scaling relationship holds between the sample
mean (M) and variance (V) as V = αMβ .

When the data are composed of N trajectories with the total
time step T, the sample mean and the sample variance can be com-
puted in two ways, spatial and temporal. By denoting the value of
nth time steps from the ith trajectory as xi

n, the spatial mean and
variance are defined as

Mn =
1

N

N
∑

i=1

xi
n,

Vn =
1

N

N
∑

i=1

(xi
n − Mn)

2
,

and the temporal mean and variance are defined as

Mi =
1

T

T
∑

n=1

xi
n,

Vi =
1

T

T
∑

n=1

(xi
n − Mi)

2
.

Chaos 31, 033111 (2021); doi: 10.1063/5.0036892 31, 033111-1

Published under license by AIP Publishing.

 29 January 2024 03:02:51

https://aip.scitation.org/journal/cha
https://doi.org/10.1063/5.0036892
https://doi.org/10.1063/5.0036892
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0036892
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0036892&domain=pdf&date_stamp=2021-03-02
http://orcid.org/0000-0002-8894-1694
mailto:kojima@sacral.c.u-tokyo.ac.jp
https://doi.org/10.1063/5.0036892


Chaos ARTICLE scitation.org/journal/cha

We call the relationship between the spatial mean and variance
as spatial TL (STL) and the temporal mean and variance as temporal
TL (TTL).

STL and TTL have been analyzed in several dynamical sys-
tems of ecological models.7–10 For example, Ballantyne8 showed that
the exponent of TTL becomes 2 when the solution of the map is
linearly scaled by changes in the parameters, and Kilpatrick and
Ives7 used the noisy Ricker model of multiple species to show TTL
between the sample mean and variance. Perry9 found STL in the
chaotic regions of the Hassell model controlled by noise, but they
provided no analytical explanations. Cohen showed that the expo-
nential growth model satisfies STL with the exponent β = 2 in the
limit of large time.10

In this paper, we investigate both STL and TTL in the chaotic
regime of 1D maps, discussing a possible mechanism of both STL
and TTL. There are only a few studies that have investigated the
relationship of STL and TTL.11–13 They use empirical data with a
probabilistic model, but no theoretical explanation was provided.
We discuss that spatial TL is explained by the skewed distribution
function, while temporal TL is dependent on the temporal correla-
tions in a time series. Zhao et al.13 argued that the skewness of the
population abundance was an important factor of the exponent β .
Although they recognized that the autocorrelation of the time series
was important, their main numerical simulations did not consider
it. Here, we will show that autocorrelation greatly influenced TL.

II. TL IN 1D CHAOTIC MAPS

We examined four discrete one-dimensional chaotic map sys-
tems that basically adopted ecological modelings—i.e., logistic map,
tent map, Hassell model,14,15 and Ricker model16,17—which have been
widely used as population models,18,19

xn+1 = rxn(1 − xn) (0 ≤ x ≤ 1), (1)

xn+1 =
µ

2
− µ

∣

∣

∣

∣

xn −
1

2

∣

∣

∣

∣

(0 ≤ x ≤ 1), (2)

xn+1 =
λxn

(1 + κxn)
ν (x ≥ 0), (3)

xn+1 = xn exp{r(1 − xn)} (x ≥ 0). (4)

The typical chaotic time series generated from these maps are shown
in Fig. 1.

In the following analysis, we used the parameter sets r = 3.9
(logistic map), µ = 1.9 (tent map), κ = 10, ν = 12, λ = 100 (Has-
sell model), and r = 5 (Ricker model). As we will show in Sec. III,
our theoretical derivation only depends on the characteristics of
chaotic dynamics and the chunk structure in the Hassell and Ricker
model; therefore, we expect that the main results of our paper should
hold in other parameter sets whenever these conditions are satisfied.

We calculated multiple trajectories by varying the initial states
with fixed parameters. Each trajectory starts from different initial
values randomly sampled from a uniform distribution between 0
and 1. The length of each trajectory is set at 20 000 time steps. We
eliminated the initial transients (discarded the first 10 000 steps)

FIG. 1. The chaotic time series of maps used here. (a) Logistic map with r = 3.9.
(b) Tent map withµ = 1.9. (c) Hassell model with κ = 10, ν = 12, λ = 100. (d)
Ricker model with r = 5.

and analyzed the last 10 000 steps (T = 10 000). By denoting the
nth value of the ith trajectory as xi

n, we analyzed the ensemble of
N samples, computing

Mn =
1

N

N
∑

i=1

xi
n,

Vn =
1

N

N
∑

i=1

(xi
n − Mn)

2

for STL and

Mi =
1

T

T
∑

n=1

xi
n,

Vi =
1

T

T
∑

n=1

(xi
n − Mi)

2

for TTL (Fig. 2).
The calculation settings of STL and TTL here can be interpreted

as the observation of population density at independent multi-
ple places of the equal environmental conditions (e.g., Refs. 9, 20,
and 21).

We study the TL relationship in terms of four values as fol-
lows: b = cov(M, V)/var(M), var(M), and var(V). The first quantity
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FIG. 2. Results of the numerical simulations of 10 000 sets of (M, V) on theM–V
plane. The data points are represented as blue dots, and the linear regression
lines are shown as red lines. (a) STL, logistic map with r = 3.9. (b) TTL, logis-
tic map with r = 3.9. (c) STL, tent map with µ = 1.9. (d) TTL, tent map with
µ = 1.9. (e) STL, Hassell model with κ = 10, ν = 12, λ = 100. (f) TTL, Has-
sell model with κ = 10, ν = 12, λ = 100. (g) STL, Ricker model with r = 5. (h)
TTL, Ricker model with r = 5.

b corresponds to the slope of the linear regression line on the
M–V plane. When the linear regression is valid, this exponent

b approximates the exponent β of TL as β '
M

V
b (M and V

are the sample mean and sample variance calculated over all

trajectories, respectively).22 The calculation details are provided in
the supplementary material.

These results are summarized in the “Numerical” columns in
Table I, and the box plot of b is shown in Fig. 3.

III. THE ORIGINS OF SPATIAL TL AND TEMPORAL TL

In the following, we will theoretically analyze and reproduce
the above arguments.

A. Spatial ensemble

The spatial ensemble is organized by random sampling from a
stationary distribution of a given map. The following quantities are
given in Refs. 22–24:

var(M) =
µ2

N
, (5)

var(V) =
1

N

(

µ4 −
N − 3

N − 1
µ2

2

)

, (6)

cov(M, V) =
µ3

N
, (7)

where N is the sample size, µ2 is equal to the variance (or the second
central moment) of the stationary distribution, µ3 denotes the skew-
ness of the stationary distribution (or the third central moment), and
µ4 denotes the fourth moments of the stationary distribution.

The covariance of the sample mean and variance is propor-
tional to the skewness of the distribution. Cohen and Xu22 argued
that it is one of the possible origins of TL.

In order to confirm that STL is explained from the skewness
of the stationary distribution, we computed a stationary distribu-
tion from the 10 000 trajectories to calculate µ2, µ3, and µ4. The
predicted value matches the value obtained from the numerical
calculation, as shown in Table I.

B. Temporal ensemble

TL relationships have different appearances in spatial and tem-
poral ensembles. If each trajectory is independent, spatial TL only
depends on the stationary distribution, as stated above, but tempo-
ral TL also depends on the temporal structure of the trajectories. We
first show how the temporal correlation in trajectories relates to tem-
poral TL; next, we estimate the temporal TL of each map based on
the characteristics of each of the temporal structures.

1. A relationship between temporal TL and spatial TL

Equations (5)–(7) only hold when the variables are sampled
independently. This holds true for the spatial ensembles but not for
the temporal ensembles, as each system has its own characteristic
memory length.

We derived that the following generalized equations are appli-
cable when the sample size N is large enough (the derivations are
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TABLE I. The results from the numerical simulations (“Numerical”) and the predicted values from the theoretical models (“Prediction”). In the “Numerical” column, we calculated

the indices from 10 000 distinct trajectories. In the “Prediction” column, we calculated the indices from the theoretical models of each map. These results are described with a

median and 95% CI calculated from 200 repeated calculations (95% CI is given below the associated median value). The “Chunk” in the Ricker model indicates that the prediction

is calculated based on the chunk structure of the dynamics, and the “Formula” indicates that Eq. (11) is used for the prediction in addition to the chunk structure. The calculation

details are described in the supplementary material.

b = cov(M, V)/var(M) var(M) var(V)

Model Type Prediction Numerical Prediction Numerical Prediction Numerical

Logistic (r = 3.9) −0.056 207 −0.056 188 8.9519*10−6 8.9753*10−6 4.6849*10−7 4.6934*10−7

Spatial (−0.056 260 (−0.059 249 (8.9508*10−6 (8.6127*10−6 (4.6844*10−7 (4.5432*10−7

−0.056 149) −0.053 120) 8.9532*10−6) 9.2578*10−6) 4.6854*10−7) 4.8350*10−7)
−0.441 42 −0.441 32 1.9021*10−6 3.7065*10−7

Temporal (−0.441 47 (−0.441 51 (1.8511*10−6 (3.6032*10−7

−0.441 36) −0.441 13) 1.9562*10−6) 3.8131*10−7)
Tent (µ = 1.9) −0.027 104 −0.026 905 5.5870*10−6 5.5960*10−6 2.7472*10−7 2.7416*10−7

Spatial (−0.027 151 (−0.030 327 (5.5859*10−6 (5.4148*10−6 (2.7466*10−7 (2.6625*10−7

−0.027 060) −0.023 764) 5.5880*10−6) 5.7732*10−6) 2.7479*10−7) 2.8283*10−7)
−0.453 62 −0.453 48 1.5664*10−6 3.2210*10−7

Temporal (−0.453 67 (−0.453 67 (1.5258*10−6 (3.1396*10−7

−0.453 57) −0.453 31) 1.6127*10−6) 3.3160*10−7)
Hassell (κ = 10, ν = 12, λ = 100) 0.141 87 0.141 86 1.1158*10−6 1.1177*10−6 2.7672*10−8 2.7719*10−8

Spatial (0.141 86 (0.140 68 (1.1156*10−6 (1.0737*10−6 (2.7665*10−8 (2.6626*10−8

0.141 89) 0.142 85) 1.1161*10−6) 1.1576*10−6) 2.7680*10−8) 2.8626*10−8)
0.439 51 0.586 75 5.0776*10−8 4.1391*10−8 1.1044*10−8 1.4551*10−8

Temporal (0.436 90 (0.585 00 (4.9191*10−8 (4.0103*10−8 (1.0734*10−8 (1.4133*10−8

0.442 29) 0.588 21) 5.2334*10−8) 4.2418*10−8) 1.1336*10−8) 1.4905*10−8)
Ricker (r = 5) 7.2162 7.2193 6.7806*10−4 6.7666*10−4 0.038 743 0.038 667

Spatial (7.2151 (7.1719 (6.7791*10−4 (6.5510*10−4 (0.038 725 (0.037 303
7.2172) 7.2508) 6.7820*10−4) 7.0472*10−4) 0.038 759) 0.040 184)
Chunk Chunk
30.484 1.0273*10−6

(29.099 7.3799 (1.0035*10−6 1.5599*10−7 Chunk
Temporal 31.681) (3.0874 1.0589*10−6) (1.5224*10−7 0.005 067 6 0.006 532 8

Formula 11.399) Formula 1.5934*10−7) (0.004 929 0 (0.006 373 2
7.5120 1.5616*10−7 0.005 201 3) 0.006 702 1)
(4.1525 (1.5217*10−7

11.040) 1.5962*10−7)

provided in the supplementary material):

var(M) =
µ2

N
+

1

N2

N−1
∑

τ=1

2(N − τ)R1(τ ),

var(V) '
1

N

(

µ4 − µ2
2

)

+
1

N2

N−1
∑

τ=1

2(N − τ)R2(τ ),

cov(M, V) '
µ3

N
+

1

N2

N−1
∑

τ=1

(N − τ)(R12(τ ) + R12(−τ)),

where the first term is equal to Eqs. (5)–(7) when the system size is
large. The second order terms are given by the following terms:

yi = xi − E [x] ,

R1(τ ) = E
[

yiyi+τ

]

,

R2(τ ) = E
[

(y2
i − µ2)(y

2
i+τ − µ2)

]

,

R12(τ ) = E
[

yiy
2
i+τ

]

.

The second order terms will vanish when the variables are
uncorrelated. Specifically, the difference between the var(M) val-
ues calculated from spatial ensembles and temporal ensembles is
proportional to the sum of the auto-correlation function.

We can calculate the TTL if we know R1(τ ), R2(τ ), and R12(τ ),
but, typically, we need to actually sample the trajectories and directly
calculate from them to acquire the functions. Below, we estimate
the TTL of each map only using map and conspicuous temporal
structure information.

2. Logistic map

The sample mean and variance of the temporal ensembles from
the logistic map are strongly correlated [Fig. 2(b)]. We found that
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FIG. 3. The results of b of spatial Taylor’s law (S) and temporal Taylor’s law
(T) from the numerical simulations [“Numerical (N)”] and the predicted values
from the theoretical models [“Prediction (P)”]. The labels S, T, P, N, C, and F
in the figure mean “spatial,” “temporal,” “Prediction,” “Numerical,” “Chunk,” and
“Formula,” respectively. The “Chunk (C)” in the Ricker model indicates that the
prediction is calculated based on the chunk structure of the dynamics, and the
“Formula (F)” indicates that Eq. (11) is used for the prediction in addition to the
chunk structure. Full results are shown in Table I.

this is a direct consequence of the quadratic form of the logistic map
[Eq. (1)]. By taking the temporal summation of Eq. (1), we analyt-
ically derived the following equation (the derivation is provided in
the supplementary material):

V =

(

1 −
1

r

)

M − M2. (8)

In general, a dynamic system containing a quadratic function
(xn+1 = cx2

n + dxn) shows this relationship in the temporal ensemble
as follows (see the supplementary material):

V =
1 − d

c
M − M2. (9)

The quadratic relationship between the sample mean and vari-
ance in general was proposed by Bartlett25 and described as follows:

V = pM + qM2.

Sometimes, this relationship has been compared to TL,26,27 and,
recently, it was called Bartlett’s law.28

This quadratic component is evident when we plot the tempo-
ral mean and variance calculated from short trajectories as shown in
Fig. 4.

In order to check whether it reproduces the results in Table I,

we calculated the exponent b using
dV

dM

∣

∣

∣

∣

M=M

(M: sample mean of all

values in the 10 000 × 10 000 data sets). The result is shown in the
column “Prediction” in Table I, and it is well fitted with that in the
“Numerical” column.

FIG. 4. The typical temporal M–V relationship in the logistic map. Here, r = 4;
the number of time steps to calculate the temporal mean and variance is 100,
and the number of plots is 2000. The red and green lines represent the linear
approximation and the theoretical curve computed from Eq. (8), respectively.

3. Tent map

The TTL of the tent map can also be analytically derived
from the equation of the map (the derivation is provided in the
supplementary material),

V =
µ

µ + 1
M − M2. (10)

This quadratic relation is clearly seen when we plot the tempo-
ral mean and variance calculated from short trajectories as well as in
the logistic map (Fig. 5).

We calculated b using this equation in the same way as for
the logistic map (see the supplementary material), and the result is
shown in the column “Prediction” in Table I, which well reproduced
the value from the “Numerical” column.

4. Hassell model

The trajectory of the Hassell model in a given parameter region
has a chunk structure, in which the value monotonically increases;
finally, it abruptly decreased to ∼0 to start the next chunk (Fig. 1).
We assume that this chunk structure is responsible for the M–V rela-
tionship in the Hassell model. In order to check the importance of
the chunk structures, we reshuffled the temporal ensembles, retain-
ing the chunk structure to build a surrogate ensemble. (The calcu-
lation detail is provided in the supplementary material.) The result
from the surrogate is shown in the column “Prediction” in Table I.
In Table I, the prediction values well reproduced the “Numerical”
values.
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FIG. 5. The typical temporal M–V relationship in the tent map. Here, µ = 2;
the number of time steps to calculate the temporal mean and variance is 100,
and the number of plots is 2000. The red and green lines represent the linear
approximation and the theoretical curve computed from Eq. (10), respectively.

5. Ricker model

The time trajectory of the Ricker model in this parameter
region also has a chunk structure, but, unlike the Hassell model, the
temporal ensemble did not show a correlation in M–V at all, and
var(M) is much smaller than the spatial ensemble.

First, we constructed the surrogate ensemble in the same way as
the Hassell model. The result is shown in the upper row of the col-
umn “Prediction“ in Table I. This did not well reproduce the result
from the “Numerical” column except for var(V).

We found that the discrepancy in var(M) is the direct conse-
quence of the form of the time evolution function, and we analyt-
ically showed that the time average depends only on the first term
and the (N + 1)th term,

M =
1

Nr
(log x1 − log xN+1) + 1, (11)

which caused the decorrelation between the sample mean and vari-
ance. This relationship can be generalized to the multi-variable
stochastic Ricker model used in Ref. 7. The derivations are provided
in the supplementary material.

Based on this, we constructed the surrogate ensemble by
random sampling two values from the stationary distribution
and applying Eq. (11). (The calculation detail is provided in the
supplementary material.) The results are shown in the lower row of
the column “Prediction” in Table I, and it well reproduced the values
in the “Numerical” column.

IV. DISCUSSION AND CONCLUSION

In summary, we have investigated STL and TTL in several
chaotic dynamical systems and analyzed the mechanisms of Taylor’s
law. STL originated from the skewness of the stationary distribution,

which is the same mechanism discussed in Ref. 22, and the difference
between STL and TTL was derived from the temporal correlation of
the state variables. In our case, each trajectory was independent of
each other, and the relationship between STL and TTL only depends
on the temporal correlation in each trajectory. Therefore, our results
were complementary to past research,12,13 which considered the case
of dependent trajectories and argued how the dependence between
the trajectories, such as the environmental synchrony and density-
dependent dispersal, affected the exponent, although the possibility
that the temporal correlation might affect the exponent of TTL was
pointed out in Ref. 13.

We also showed that the TTL was well approximated based
on the characteristic temporal structure of each map. In the Hassell
model, the temporal structure over several time steps, chunk struc-
tures, mostly contributed to the M–V relationships, while, in the
logistic map and the tent map, the relationships between the present
value and the value of the next time step, which are expressed in the
time-evolution equations, strongly influenced the mean–variance
relationships. Interestingly, while the trajectories from the Ricker
model have chunk structures similar to those of the Hassell model,
the TTL cannot be well approximated by the chunk structure due
to the presence of the relationship directly derived from the map
formula [Eq. 11], as found in the logistic map and the tent map.

The quadratic relation obtained for the TTL of the logistic map
and the tent map is an example of the relationship called Bartlett’s
law.25 Our explanation, based on the relationship between the val-
ues of consecutive time steps, can provide another explanation for
the quadratic relations. On the other hand, the mechanism of TL in
high-dimensional systems may be different, and further research is
needed.

SUPPLEMENTARY MATERIAL

See the supplementary material for the calculation details of
Table I and for details concerning the methods of our numerical
simulations and derivations for our analytical results.
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